Armoured Vehicles Testing Standards

Current approach

Piet-Jan Leerdam

Agenda

- The introduction
- Overview test standards
- Protection requirement specification
- The VPAM standard
 - VPAM Ballistic testing process and choices
 - VPAM Blast testing process and choices
- Injury assessment approach (ATD)
- Certification and reports
- Summary and Final remarks

Introduction

- Armouring a vehicle is an expertise, testing the armoured vehicle is another one
- But also: Procuring vehicles is an expertise, specifying the (protection) requirements is another one
- The need for Civilian Armoured Vehicles is still there, the need for <u>certified</u> armoured vehicles is growing
 - Test standards provides the procedures for proper testing and certifying
- The focus is to the <u>occupant safety</u>.
 - Crew & passenger should survive and preferably with no or limited injuries. <u>What is acceptable?</u>
 - Mobility helps the survivability, therefor protection of critical drive-line components could be involved as well
- Balanced approach between capabilities:
 - Weight / volume restrictions
 - Road worthiness restrictions

Overview of (international) vehicle standards

Scope		Ballistic	Mine / IED	
	Armoured Military Vehicles	STANAG 4569 AEP-55 Vol. 1	STANAG 4569 AEP-55 Vol. 2 + 3	
	(UP)Armoured Civilian Vehicles	VPAM BRV PAS 300 STANAG 4569 AEP-55 Vol. 1	VPAM ERV PAS 300 STANAG 4569 AEP-55 Vol. 2 + 3	
	Armoured VIP Vehicles	VPAM BRV PAS 300	VPAM ERV PAS 300	

Overview of (international) vehicle standards

- STANAG 4569:
 - Well known and world-wide accepted in military domain
 - Officially for use by NATO-countries, but also used in other countries
 - Testing by any experienced test institute possible

- Well known, originally a German standard
- Certifying limited to VPAM members (GE Beschussamten, TNO)
- PAS 300 (CPNI):
 - Well known, originally an UK standard
 - Certifying by any experienced test institute possible

Overview of (international) standards

And what about other standards?

EN 1063 (BRx)

EN 1522/1523 (FBx)

• Nij (0101.06)

 A <u>vehicle test standard</u> is needed for testing the integrated armour solution in order to judge the occupant safety.

Operational requirements

- Area of operation
 - Continent, countries, war-zone, peace-keeping
 - Terrain: country-side, urban
- Threat scenario's:
 - Ballistic threats: hand weapons, rifles, machine guns
 - Blast threats: hand grenades, AP/AT mines, IEDs
 - Others, like AT weapons?
- Occupant safety acceptance criteria:
 - Injury severity
 - Risk of getting injured
 - Fragment injuries, bio-mechanic injuries

Operational Requirements Where? Which threat? Which task? Which risk? Which acceptance?

Functional requirements

- <u>Primary</u> protection requirements:
 - Protecting the occupants (crew/passenger) for protection <u>level XX</u>
 - Ballistic protection <u>mandatory</u>
 - Hand grenade / AP-mine / Side blast <u>optional or mandatory?</u>
- *Secondary* requirements:
 - Mobility related
 - Protection of critical (automotive) components
 - Safety
 - Security lock
 - Emergency exit
 - Close-in fire capability (gun-ports or roof hatch)

Functional Requirements Protection definition and level(s) Extra safety measures?

Technical requirements

Technical Requirements

How to build?

- Armouring sides/roof/floor of occupant compartment
- Armouring (selected) critical automotive components
- Material specification and selection
- Construction and Integration
- Design (CAD) drawings
- Production quality control

Technical Requirements

How to test?

- Test specification and procedures
- Threats for testing
- Charge location, angles, distances
- Instrumentation
- Acceptance criteria
- Report and certification

The VPAM standard

- VPAM
 - Association of test institutes for protective materials and constructions
 - Main goal is to define test procedures for standard testing and sharing experiences

- Two vehicle test procedures:
 - BRV: Ballistic Resistance Vehicle
 - ERV: Explosive Resistance Vehicle

It is not just testing, it is a process! It is about confidence in the protection concept!

- Latest editions of BRV and ERV:
 - VPAM-BRV Edition 3
 - VPAM ERV 2010 Edition 2 (01-08-2017)*
 - VPAM-ERV Edition 3 (15-03-2021) on customer request*

www.vpam.eu

Chairmanship by TNO since August 2023

^{*} Available on request after signing a non-disclosure agreement

VPAM Ballistic Process (Approach)

1. Test plan:

- Protection level
- Description of vehicle design and main armour concept (=Main Areas)

2. VPAM-PM testing:

- Main Area sample testing (3x, 3+3 shots large and small triangle)
- *Flat* and *curved* transparent armour (3x, 3 shots large triangle)

3. VPAM-BRV testing

- Vehicle Inspection
- Vehicle Testing
- Re-test on mock-up

VPAM Ballistic Process (Selections)

- Test level (VRx)
- Azimuth 360°
- Elevation angle
 - 90°, reduction to 45° or 30° over whole vehicle (not only roof)
 - Reduction to 0° for windscreen (VR8+)
 - Negative angles (if realistic for higher vehicles)

Je /	A	Ammunition and projectile			Test conditions	
Test level	Caliber	Туре	Nominal mass [g]	Manufacturer/ type	Firing distance 12) [m]	Impact velocity [m/s]
1	22 Long Rifle ⁴	L/RN	2.6	RUAG HV Field Line	10 ± 0.5	360 ± 10
2	9 mm Luger ^{5) 7)}	FMJ/RN/SC	8.0	DAG, DM 41	5 ±0.5	360 ± 10
3	9 mm Luger ^{5) 7)}	FMJ/RN/SC	8.0	DAG, DM 41	5 ±0.5	415 ± 10
41)	357 Magnum	FMJ/CB/SC	10.2	Geco	5 ±0.5	430 ± 10
	44 Rem. Mag. ⁶⁾	JSP/FN/SC	15.6	Speer No. 4454	5 ±0.5	440 ± 10
5	357 Magnum	FMs/CB	7.1	Specification IAW VPAM ¹³⁾	5 ±0.5	580 ± 10
6	7.62 x 39	FMJ/PB/FeC	7.9	PS ¹⁰⁾	10 ±0.5	720 ± 10
71)	223 Rem. ^{2) 8)}	FMJ/PB/SCP	4.0	MEN, SS 109	10 ± 0.5	950 ± 10
	308 Win. 9)	FMJ/PB/SC	9.55	MEN, DM 111	10 ±0.5	830 ± 10
8	7.62 x 39	FMJ/PB/HCI	7.7	BZ ¹⁰⁾	10 ±0.5	740 ± 10
9	308 Win. ^{3) 9)}	FMJ*/PB/HC	9.6	FNB, P 80	10 ±0.5	820 ± 10
10	7.62 x 54 R	FMJ/PB/HCI	10.4	B32 ¹⁰⁾	10 ± 0.5	860 ± 10

The twist rates can be gathered from the dimension sheets (TDCC) of the C.I.P. Deviating twist rates and dimensions are marked by exponents in the column "Caliber".

VPAM Ballistic Process (Full-scale test)

- Areas:
 Pillars (A/B/C/D-pillars), Door & glass edges and gaps,
 Roof edges, Door sills, Cant rail, Fenders, Fire wall,
 Mirror fixing, Door locks
- Shot pattern:
 - 3-shot pattern
 - Small/large triangle (4±1 calibre / 120 mm)
 - Small lines (4±1 calibre)
 - Long lines (min. 120 mm)
- Reports:
 - Test report(s)
 - Certification document

Shooting under 'worst-case' conditions.

All shots have to be stopped!

In case of a perforation, the protection concept has to be modified and re-tested!

VPAM Blast Process (Approach)

1. Test plan:

- Threats (hand grenade, AP-mine, side-blast)
- Charge locations
- Measurement set-up

2. Optional pre-testing on samples:

Fragmentation effects hand grenades and/or AP-mine

3. VPAM-ERV testing

- Vehicle Inspection (combined with BRV inspection)
- Vehicle Testing
- Re-test on mock-up

VPAM Blast Process (Selection)

- Grenade protection :
 - Hand grenade (vehicle floor and roof):
 - DM51 or HG85
 - Single or double
 - AP-mine:
 - DM31 surrogate (vehicle floor only)
- Road-side blast protection:
 - VPAM specified bare explosive charge
 - Distance to B-pillar (2 or 4 m)

The blast charge specification in VPAM differs from the STANAG 4569 and differs from the PAS300!

Threat level	Grenade	Single/double
n.a.	DM51	Single
n.a.	DM51	Double
n.a.	HG85	Single
n.a.	HG85	Double
n.a.	DM31	Single

VPAM Blast Process (Grenades)

- Worst-case charge locations (w.r.t. the occupants):
 - Under feet
 - Above head
- Extra test (fragmenting effects):
 - In case of protection concept differences or expected weaknesses
- Measurements:
 - Fragments: witness <u>foil</u>
 - Roof-head impact sensor
 - Floor deformation
 - Bio-mechanic loads with a manikin

VPAM Blast Process (Road-side blast)

- Worst-case locations (w.r.t. the occupants):
 - Aligned with B-pillar
 - Front row seat (driver or co-driver)
- Measurements:
 - Fragments: witness foil, normal/high-speed video
 - Pressure
 - Bio-mechanic loads with manikin(s)

VPAM-ERV Edition 2 versus Edition 3

Edition 2 (01-08-2017):

- Analysis of:
 - Fragmenting effects
 - Floor deformation
 - Roof-head impact
 - Pressure
 - Option for <u>occupant response</u>:
 - Anthropomorphic Test Device (ATD)
 - Based on customer specification (i.e. STANAG 4569 AEP-55 Vol. 2 + 3)
 - Pass/fail approach

Re-use of ATD as long as certification/calibration is valid

Edition 3 (01-03-2021):

- Analysis of:
 - Fragmenting effects
 - Roof-head impact
 - Pressure
 - Occupant response with:
 - Biofidel (Primus) analysis (autopsy)
 - Star ranking approach

For each test a new dummy needed

Injury assessment with ATDs

- Anthropomorphic Test Device (crash test dummy):
 - A mechanical model to measure:
 - Acceleration
 - Forces, moments
 - Deflections
 - Three Rs: Repeatable, reproducible, robust
- Link to real injury:
 - Injury risk curves:
 - Injury severity (AIS)
 - Injury probability (10%)
 - Match-pair testing:
 - PMHS versus ATD

Injury assessment with ATDs

- STANAG 4569 <u>acceptance decision</u>:
 - Moderate injuries (AIS2)
 - <10% probability of injury
- HFM working groups defined list of injury criteria and (pass/fail) tolerance levels for several body regions:
 - For Hybrid III ATD (vertical impact)
 - For EuroSid-2re ATD (side impact)
- Main advantage of the use of ATDs:
 - Clear measurement data (direct after test available)
 - Clear information about the performance of the protection concept
 - International acceptance in automotive/military domain

Axial compr. force, Right Fz -

Axial compr. force, Left Fz-, Lx

Axial compr. force.Right Fz-, Lx

Chest Wall Velocity

Lower leg

Pressure

0.7

4.1

2.2

0.3

7.4

8.5

31.5

6.9

2.6

2.6

3.6

Injury assessment with ATDs

- ATDs developed for <u>kinematic response</u> (motion) and <u>resulting impact</u> (in car crashes)
- ATDs being used for <u>impact loads</u> from <u>high-rate acceleration</u> with specific selected and developed criteria
- Hybrid III for vertical impacts:
 - Lower leg load
 - Lumbar spine load (DRI)
 - Neck loads and/or head impact
- EuroSid-2re for side impact:
 - Pelvis impact
 - Thorax/ribs impact
 - Shoulder impact
 - Neck loads and/or head impact

Report and certification

- It is all about proof and traceability!
- Certificate is a 'Statement of Compliance' to a certain standard:
 - Reference to standard, edition number
 - Threat specification
 - Test target specification
 - Design reference(s), drawing number(s)
 - VPAM Test institute
 - Test results
 - Test report reference
- A test report gives all the details:
 - Also the <u>failures</u> and <u>improvements!</u>

Strongly advised:

- Ask for both the certificate and the test report(s).
- Check the vehicle being delivered compared to the vehicle being tested (production quality control)

Report and certification (example BRV)

	•
VPAM Qualification Authority	TNO Defence, Safety and Security
	Ypenburgse Boslaan 2
	2496 ZA Den Haag
	The Netherlands
Test institute	TNO Weapon Effects & Protection Center
	Ypenburgse Boslaan 2
	2496 ZA Den Haag
	The Netherlands
Customer	
Manufacturer base vehicle	
Manufacturer armoured vehicle	
Manufacturer armour steel	
Manufacturer transparent armour	

Vehicle type (base vehicle)	Toyota Land Cruiser 300
Design reference of base vehicle	XXX-XXX-XXX
Vehicle identification number (VIN)	JTMxxxxxxxxxxxxx
Left/right hand drive	Left
Vehicle weight	xxx kg
Protection Side panels	Ballistic Steel Xxxxx xxxx BHN – x.x mm
Protection Fire wall	Ballistic Steel Xxxxx xxxx BHN – x.x mm
Protection Roof Hatch	Ballistic Steel Xxxxx xxxx BHN – x.x mm
Protection Roof	Ballistic Steel Xxxxx xxxx BHN – x.x mm
Protection Floor	Ballistic Steel Xxxxx xxxx BHN – x.x mm
Protection Side Windows	Xxx xx.x mm
Protection Front Windshield	Xxx xx.x mm
VPAM-PM ballistic test report	TNO Test report xxxxx
transparent armour	
VPAM-PM ballistic test report opaque	TNO Test report xxxx
armour	TNO Test report xxxx
	TNO Test report xxxx

VPAM-BRV, Fassung 3, 15-03-2021
VRx
• XXX
360° azimuth
Elevation up to xx°
0° NATO for worst case.
TNO Weapon Effects & Protection Center, Target
Bunker, The Hague, the Netherlands
10 meter (for roof tests at ~2m)
0.2 to 1.0 meter ahead of the target
Polycarbonate plate as specified in VPAM-BRV
0.5 mm
Behind the back face surface of the armour at
about 5 - 10 cm.
Inside vehicle parallel to the back face
17.5 to 20.5° C
TNO The Hague Ypenburg, The Netherlands
Month xx th - Month xx th , 202x

Summary and Final Remarks

- Procurement of an Armoured Vehicle starts with <u>clear requirements</u> on both operational/functional/technical level
- To guarantee the occupant safety a <u>vehicle standard</u> needs to be applied for testing and certification
- There are differences between vehicle standards, but they all give a certain <u>confidence</u> in the <u>safety</u>
- Focus is the '<u>occupant safety</u>', which should also be for testing by including <u>occupant response assessment</u>
- The use of an <u>Anthropomorphic Test Device</u> and a <u>transparent international accepted standard</u> with well-defined <u>pass/fail acceptance</u> criteria gives clear information about the <u>performance of a protection concept</u>

- What about the future with electric vehicles?
 - What are the risks, what is accepted?
 - How to protect?
 - How to test?

Tesla Model 3 attack in October 2023

THANK YOU

Piet-Jan Leerdam

TNO Defence, Safety and Security

Piet-jan.leerdam@tno.nl